Nonlinear vibrations of rotating pretwisted composite blade reinforced by functionally graded graphene platelets under combined aerodynamic load and airflow in tip clearance
نویسندگان
چکیده
The primary resonance and nonlinear vibrations of the functionally graded graphene platelet (FGGP)-reinforced rotating pretwisted composite blade under combined external multiple parametric excitations are investigated with three different distribution patterns. FGGP-reinforced is simplified to cantilever plate reinforced by platelet. It novel simplify leakage airflow in tip clearance non-uniform axial excitation. speed steady state adding a small periodic perturbation considered. aerodynamic load subjecting surface simulated as transverse Utilizing first-order shear deformation theory, von Karman geometric relationship, Lagrange equation mode functions satisfying boundary conditions, three-degree-of-freedom ordinary differential equations motion derived for excitations. dynamic behaviors analyzed Runge–Kutta method. amplitude–frequency response curves, force–frequency bifurcation diagrams, maximum Lyapunov exponent, phase portraits, waveforms Poincare map obtained investigate responses
منابع مشابه
Small Scale Effects on the Large Amplitude Nonlinear Vibrations of Multilayer Functionally Graded Composite Nanobeams Reinforced with Graphene-Nanoplatelets
The main purpose of the present investigation is to analyze more comprehensively the size-dependent nonlinear free vibration response of multilayer functionally graded graphene platelet-reinforced composite (GPLRC) nanobeams. As a consequence, both of the hardening stiffness and softening stiffness of size effect are taken into consideration by implementation of the nonlocal str...
متن کاملAn Analytical Approach of Nonlinear Thermo-mechanical Buckling of Functionally Graded Graphene-reinforced Composite Laminated Cylindrical Shells under Compressive Axial Load Surrounded by Elastic Foundation
This paper deals with an analytical approach to predict the nonlinear buckling behavior of functionally graded graphene-reinforced composite laminated cylindrical shells under axial compressive load surrounded by Pasternak’s elastic foundation in a thermal environment. Piece-wise functionally graded graphene-reinforced, composite layers are sorted with different types of graphene distribution. ...
متن کاملNonlinear Vibration of Functionally Graded Cylindrical Shells under Radial Harmonic Load
In this paper, the nonlinear vibration of functionally graded (FGM) cylindrical shells subjected to radial harmonic excitation is investigated. The nonlinear formulation is based on a Donnell’s nonlinear shallow-shell theory, in which the geometric nonlinearity takes the form of von Karman strains. The Lagrange equations of motion were obtained by an energy approach. In order to reduce the syst...
متن کاملCreep Evolution Analysis of Composite Cylinder Made of Polypropylene Reinforced by Functionally Graded MWCNTs
Polypropylene is one of the most common, fastest growing and versatile thermoplastics currently used to produce tanks and chemical piping systems. Even at room temperature creep is considerable for polypropylene products. The creep behavior of strains, stresses, and displacement rates is investigated in a thick-walled cylinder made of polypropylene reinforced by functionally graded (FG) multi-w...
متن کاملGeneralized solution of functionally graded hollow cylinder under torsional load
In this paper, a general solution for torsion of hollow cylinders made of functionally graded materials (FGM) was investigated. The problem was formulated in terms of Prandtl’s stress and, in general, the shear stress and angle of twist were derived. Variations in the material properties such as Young’s modulus and Poisson’s ratio might be arbitrary functions of the radial coordinate. Various m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Dynamics
سال: 2021
ISSN: ['1573-269X', '0924-090X']
DOI: https://doi.org/10.1007/s11071-021-06681-z